Influence of Curing Temperature on Strength Development of Concrete

Tine Aarre, Danish Technological Institute, Taastrup, Denmark
Martin Kaasgard, Taastrup, Denmark
Influence of Curing Temperature on Strength Development of Concrete

Background:
- Minimize the risk of thermal cracking in large concrete structures using temperature and stress analysis.
Problem – risk of cracking in Large Concrete Structures:

- Thermal cracks in top of restrained wall
- Thermal cracks in wall cast on existing structure

Using Temperature and Stress analysis in the planning phase can significantly minimize the risk of thermal cracking in large concrete structures.
Influence of Curing Temperature on Strength Development of Concrete

Background:
• Minimize the risk of thermal cracking in large concrete structures using temperature and stress analysis.

Is the result of a temperature and stress analysis reliable?
• If the input parameters are right – yes!
Influence of Curing Temperature on Strength Development of Concrete

Background:
- Minimize the risk of thermal cracking in large concrete structures using temperature and stress analysis.

Is the result of a temperature and stress analysis reliable?
- If the input parameters are right – yes!

Questions have been raised regarding:
- The applicability of the maturity concept to modern concretes.
- The effect of the curing history on compressive strength of laboratory samples cured at elevated temperatures.
Development of strength - a decisive input parameter for the Temperature and Stress analysis

1. The applicability of the maturity concept to modern concretes.
2. Validity of experimentally determined strength values for samples exposed to high curing temperatures.

\[M = \sum_{i=1}^{n} H(\theta_i) \Delta t_i \]
The applicability of the maturity concept to modern concretes

Freiesleben, 1977:

\[M = \sum_{i=1}^{n} H(\theta_i) \Delta t_i \quad H(\theta) = \exp \left[\frac{E(\theta)}{R} \left(\frac{1}{293} - \frac{1}{273 + \theta} \right) \right] \]

Since 1977, we have used:

\[E(\theta) = B \quad = 33,500 \text{ J/mol for } \theta \geq 20 \, ^\circ\text{C} \]
\[E(\theta) = B + C \left(20 - \theta \right) \quad = 33.500 + 1.470 \left(20 - \theta \right) \text{ J/mol for } \theta < 20 \, ^\circ\text{C} \]

• Introduction of new cements
• Increased use of fillers and pozzolans (limestone powder, fly ash, microsilica etc.)
• How has this effected the Activation Energy \(E(\theta) \) ?
The maturity concept – experimental investigation

Four concretes:

<table>
<thead>
<tr>
<th>Concrete</th>
<th>A (LA)</th>
<th>B (LA+FA)</th>
<th>D (Rapid+FA)</th>
<th>E (Slag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low alkali cement, CEM I 42.5 N</td>
<td>100</td>
<td>75</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Rapid cement, CEM I 52.5 N</td>
<td></td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Slag cement, CEM III/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fly ash</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Six curing temperatures: 5, 10, 20, 30, 45 and 60 ºC.

Five ages (from 24 m-hours to 28 m-days)

Compressive strength: 3 Ø100 x 200 mm cylinders for each combination of concrete, temperature and age.
The maturity concept

The activation energies calculated using the principles of the test method TI-B 103:

$$E(\theta_n) = (\ln k_{\theta n} - \ln k_{20}) \frac{R}{\left(\frac{1}{T_{20}} - \frac{1}{T_{\theta n}}\right)}, \quad \theta_n \neq 20^\circ C$$

Concrete A (LA)
The maturity concept

<table>
<thead>
<tr>
<th>Mix design</th>
<th>Activation energy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E(≥20) [J/mol]</td>
<td>C [J/mol/°C]</td>
</tr>
<tr>
<td>A (LA)</td>
<td>26.690</td>
<td>1.851</td>
</tr>
<tr>
<td>B (LA+FA)</td>
<td>39.682</td>
<td>765</td>
</tr>
<tr>
<td>D (Rapid+FA)</td>
<td>30.651</td>
<td>1.225</td>
</tr>
<tr>
<td>E (Slag)</td>
<td>35.098</td>
<td>903</td>
</tr>
<tr>
<td>"Common" value</td>
<td>33.500</td>
<td>1.470</td>
</tr>
</tbody>
</table>

B (LA+FA): + 18%
A (LA): - 20%
The maturity concept

Conclusion:
- The activation energy does vary with the binder composition (± 20%).
- Only a slight improvement of the estimated compressive strengths is obtained using the experimentally determined value of $E(\theta)$.
- Determination of $E(\theta)$ requires a comprehensive testing program – thus the common value of $E(\theta)$ is still "best practice" for most modern concretes.
Impact of curing history on strength of laboratory samples cured at high temperatures

Four concretes: A (LA), B (LA+FA), D (Rapid+FA), E (Slagg)

Two different curing scenarios were applied for samples cured at 60 °C:

1. Isothermal curing at 60 °C.
2. Gradually increased temperature from 20 to 60 °C.
Impact of curing history on strength of laboratory samples cured at high temperatures

A (LA)
- A 60 °C - gradual
- A 60 °C

B (LA + FA)
- B 60 °C - gradual
- B 60 °C

D (Rapid + FA)
- D 60 °C - gradual
- D 60 °C

E (Slag)
- E 60 °C - gradual
- E 60 °C

+ 16% at 28 md
+ 24% at 28 md
+ 19% at 28 md
+ 10% at 28 md
Impact of curing history on strength of laboratory samples cured at high temperatures

Conclusion:

• The temperature history of concrete samples cured at elevated temperatures has a significant impact on the compressive strength.

• Gradual heating of the concrete, results in a significantly higher strength than when curing takes place at a constant high temperature.

• The above shall be taken into consideration in the planning of laboratory experiments that shall estimate the strength in a structure that will be exposed to high temperatures during the curing process.
4C-Temp&Stress for concrete - Demo

A demo version of 4C-Temp&Stress is currently unavailable for downloading. The new demo version will be available by the end of May 2015.

Select Page
01. Description
02. Details
03. Demo

Read more
IT-tools for concrete
Green concrete activities

Other documents
Concrete curing - hardening technology
Concrete Centre Newsletter
4C-Packing - The software
Testing of concrete - Method list
Groundbreaking research in fuel cells

Your Contact
Jens Ole Frederiksen
Chief Consultant
Concrete

Contact me
Enter your inquiry here...
Your name
Your email address
Or your phone number
Send