

Concrete No.: Femern A

Age: 28 days

TT I AND THE STORY IS IN A MARTINE STORY	Mix Design		Fresh Properties		
	CEM I 42,5 N Fly ash Microsilica Water Air % F. agg. 0/2 C. agg. 4/8 C. agg. 8/16 C. agg. 16/22	365 0 146 4,5 695 377 266 529	w/c Air largeB, fresh% Slump, mm Density, kg/m ³ 28 days, MPa Air, hard.% Casting date	0,40 5,9 200 2310 43,3 3,2	
Micro-observations					

Thin calcite layer on surface Carbonated paste not observed Uniform paste porosity through core W/c estimated to about 0,45 No cracks in surface Generally no cracks in paste except few adhesion cracks Relatively poor air void structure, appears lower than 4,5%, few of the smallest voids, some air void clusters present

2 15 25 PM 49 8 um 20 00 kV 5 995 x 9.8 mm 5

Concrete No.: Femern B

Age:	28	day	/S
------	----	-----	----

Micro-observations

No calcite layer on surface Carbonated paste not observed Generally uniform paste porosity through core with a weak increase towards the W/c estimated to about 0,45 No cracks in surface Very few cracks in paste as well as few adhesion cracks with CH Relatively poor air void structure, air content probably on target but air voids are highly clustered especially along aggregate

/4/2010 HFW HV mag 12:42 PM 49.9 μm 20.00 kV 5.978 x

Concrete No.: Femern C

Age: 28 days

Mix Design		Fresh Properties	
CEM I 42,5 N Fly ash Microsilica Water Air % F. agg. 0/2 C. agg. 4/8 C. agg. 8/16 C. agg. 16/22	300 100 0 140 4,5 642 367 271 541	w/c Air large B, fresh% Slump, mm Density, kg/m ³ 28 days, MPa Air, hard.% Casting date	0,40 5,5 110 2330 43,8 5,4
Micro-o	bserva	ations	

Concrete No.: Femern D (SCC)

4

Age: 28 days

THE REPORT OF THE	Mix Design		Fresh Properties	
	CEM I 42,5 N Fly ash Microsilica Water Air % F. agg. 0/2 C. agg. 4/8 C. agg. 8/16 C. agg. 16/22	320 107 0 149 4,5 694 357 720 0	w/c Air largeB, fresh% Slump, mm Density, kg/m ³ 28 days, MPa Air, hard.% Casting date	0,40 4,3 - 2360 52,7 2,6

Micro-observations

Thin calcite layer on surface Weak sign of carbonation observed Very uniform paste porosity through core W/c estimated to about 0,45 No cracks in surface except for 1 surface parallel crack 1.5mm under surface Very few cracks in paste Some adhesion cracks observed Relatively low air void content, seem to be lower than target, few of the very small voids

1 07 47 PM 99 5 µm 20 00 kV 3 000 x 8.9 mm 5.0

Concrete No.: Femern E

Age: 28 days

A CASE OF A CASE ON THE DATE	Mix Design		Fresh Properties	
NO THE PARTY OF A COMPANY	CEM I 42,5 N	340	w/c	0,40
at the second state of the	Fly ash	0	Air large B, fresh%	4,8
HAR STREET IN	Microsilica	14	Slump, mm	140
A TOTAL OF COME	Water	147	Density, kg/m ³	2350
	Air %	4,5	28 days, MPa	56,4
	F. agg. 0/2	695		
	C. agg. 4/8	377	Air, hard.%	5,6
AS AS AS AS AS AS	C. agg. 8/16	266	Casting date	
	C. agg. 16/22	529		

Micro-observations

Thin calcite layer on surface No sign of carbonation Uniform paste porosity through core, weak increase towards surface W/c estimated to about 0,45 Some plastic cracks in surface Very few cracks in paste Relatively poor air void structure, air content probably on target but air voids are somewhat clustered especially along aggregate

Concrete No.: Femern F

Age: 28 days

	Mix Design		Fresh Properties		
	CEM I 42,5 N Fly ash Microsilica Water Air % F. agg. 0/2 C. agg. 4/8 C. agg. 8/16 C. agg. 16/22	300 43 14 140 4,5 677 377 272 543	w/c Air largeB, fresh% Slump, mm Density, kg/m ³ 28 days, MPa Air, hard.% Casting date	0,40 5,2 140 2350 56,2 3,9	
Micro-observations					

Thin calcite layer on surface No sign of carbonation Uniform paste porosity through core, weak increase towards surface Paste appears rather opaline W/c estimated to about 0,45 No cracks in surface Very few cracks in paste, dew adhesion cracks Relatively poor air void structure, air content probably on target but air voids are somewhat clustered especially along aggregate

1.28:47 PM 106 µm 20.00 kV 2.828 x 9.5 mm 5.0

Concrete No.: Femern G

Age: 28 days

	Mix Design		Fresh Properties	
The a state is a state to	CEM I 42,5 N	310	w/c	0,40
	Fly ash	44	Air largeB, fresh%	2,1
	Microsilica	15	Slump, mm	120
A DO THE STORE OF THE STORE	Water	145	Density, kg/m ³	2440
	Air %	2	28 days, MPa	69,2
1	F. agg. 0/2	731		
	C. agg. 4/8	386	Air, hard.%	2,3
	C. agg. 8/16	266	Casting date	
A STATISTICS STATISTICS	C. agg. 16/22	530		
AN REAL DAY				
A REAL PROPERTY AND A REAL				

Micro-observations

Calcite layer on surface not observed Carbonation to 0,3mm, 1,5mm along crack in surface Generally uniform paste porosity through core, however with a distinct increase towards surface Paste rich areas present W/c estimated to about 0,45 Few cracks in surface Some cracks in paste, and some adhesion cracks with CH, shrinkage cracks in paste rich areas Few voids, as target

Concrete No.: Femern H

A LAY MAN	Mix Design		Fresh Properties	
	CEM I 42,5 N	276	w/c	0,45
	Fly ash	39	Air largeB, fresh%	4,9
V Star 1 Parts	Microsilica	13	Slump, mm	160
A A A A A A A A A A A A A A A A A A A	Water	145	Density, kg/m ³	2380
A A S NA A A A A A A A A A A A A A A A A	Air %	4,5	28 days, MPa	51,0
	F. agg. 0/2	700		
12100 100 100 100 100 100 100 100 100 10	C. agg. 4/8	380	Air, hard.%	4,1
A BAR A	C. agg. 8/16	268	Casting date	
	C. agg. 16/22	534		
A 10 7 0 1 97 A				
A REAL PROPERTY AND A REAL				

Micro-observations

Calcite layer on surface not observed Carbonation not observed Generally uniform paste porosity through core, weak increase towards surface Opaline paste at surface W/c estimated to about 0,45 Few adhesion cracks near surface Relatively poor air void structure, air content probably on target but air voids are somewhat clustered especially along aggregate and at surface

8

Concrete No.: Femern I

Age: 28 days

AND A SHE & WITHOUT AND	Mix Design		Fresh Properties	
	CEM I 42,5 N	330	w/c	0,35
	Fly ash	47	Air largeB, fresh%	5,7
	Microsilica	16	Slump, mm	160
	Water	135	Density, kg/m ³	2370
	Air %	4,5	28 days, MPa	62,3
A CONTRACT OF A	F. agg. 0/2	671		
	C. agg. 4/8	374	Air, hard.%	3,7
	C. agg. 8/16	270	Casting date	
	C. agg. 16/22	538	-	
WARMAN NOT REPORT A SCATTER DO NOT				

Micro-observations

Thin calcite layer on surface Carbonation not observed Generally uniform paste porosity through core, weak increase towards surface Paste rich area around air clusters W/c estimated to about 0,45 Few plastic cracks at surface Few adhesion cracks with CH Relatively poor air void structure, air content probably on target but air voids are somewhat clustered especially along aggregate

Concrete No.: Femern J (SCC)

Age: 28 days

	Mix Design		Fresh Properties	
	CEM I 42,5 N	340	w/c	0,40
and the approximate of	Fly ash	49	Air largeB, fresh%	3,5
	Microsilica	16	Slump, mm	-
	Water	159	Density, kg/m ³	2370
	Air %	4,5	28 days, MPa	59,5
a at the second second	F. agg. 0/2	696		
AND A CONTRACT OF A CONTRACT O	C. agg. 4/8	359	Air TiB, hard.%	3,8*
	C. agg. 8/16	722	Casting date	
	C. agg. 16/22	0		
THE REAL PROPERTY AND A DESCRIPTION OF				

Micro-observations

Calcite layer on surface not present Carbonation not observed Generally uniform paste porosity through core, weak increase towards surface Weakly opaline paste with relatively large CH CH in adhesion cracks and small air voids Occasionally paste rich W/c estimated to about 0,45 Some cracks at surface Some adhesion cracks throughout, few paste cracks Well distributed air void structure, air content on target

Concrete No.: Femern K

	M
	CI
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E FI Mi
50 - 5 - 5 - 6 - 6 - 6	W
	F.
	C.
	C.
1-1 1.00 1.11 0	

1	····· = ···· g ··
	CEM III/B 42,5N
	Fly ash
	Microsilica
1	Water
	Air %
ŝ	F. agg. 0/2
	C. agg. 4/8
ĝ	C. agg. 8/16
l	C. agg. 16/22
ŝ	

Age: 28 days

lix Design		Fresh Properties	
EM III/B 42,5N	360	w/c Air largeB_fresh%	0,40 4 8
icrosilica	0	Slump, mm	160
/ater ir %	144 4,5	Density, kg/m³ 28 days, MPa	2320 55,6
agg. 0/2	689 373	Air TiB hard %	4 0
. agg. 8/16	263	Casting date	170
. agg. 16/22	525		

Micro-observations

Thin calcite layer at surface Feathery phases in voids exposed at surface Carbonation not observed Generally inhomogeneous paste porosity through core (patchy). Distinct increase towards surface Highly opaline paste, CH nearly invisible W/c estimated to about 0,45 No cracks at surface Some paste cracks Relatively poor air void structure, air content probably on target but air voids are somewhat clustered especially along aggregate Greenish paste at interior, light grey at surface

Concrete No.: Femern L

Mix Design
CEM III/B 42,5N Fly ash Microsilica Water Air % F. agg. 0/2 C. agg. 4/8 C. agg. 8/16 C. agg. 16/22

Age: 28 days

		Fresh Properties	
2,5N	375 0 150 2 702 381 269 535	w/c Air largeB, fresh% Slump, mm Density, kg/m ³ 28 days, MPa Air, hard.% Casting date	0,40 0,9 100 2460 68,8 1,1

Micro-observations

Thin calcite layer at surface Carbonation not observed Generally inhomogeneous paste porosity through core. Porosity increases towards surface Highly opaline paste, large CH crystals in paste, voids and adhesion cracks. W/c estimated to about 0,40 No cracks at surface Some adhesion cracks, especially near surface Sign of bleeding pockets Greenish paste at interior, light grey at surface

11:13:26 AM 49.8 µm 20:00 kV 5 995 x 9.5 mm 5.0

Concrete No.: Femern M (SCC)

CEM III/B 42,5N Fly ash Microsilica F. agg. 0/2 C. agg. 4/8 C. agg. 8/16 C. agg. 16/22

Micro-observations

410

0

0

164

4,5

686

353

712

w/c

Thin calcite layer at surface Carbonation not observed Generally inhomogeneous paste porosity Porosity distinctly increases towards surface Highly opaline paste, large CH crystals in paste and voids. W/c estimated to about 0,40 No cracks at surface or inside concrete Well distributed air void system Distinct greenish paste at interior, light grey at surface (upper 24mm)

0,40

4,8

2320

52,9

4,4

Fresh Properties

Air largeB, fresh%

Slump, mm

Density, kg/m³

Air TiB, hard.%

Storage water

Casting date

28 days, MPa

Concrete No.: Femern N

	Mix Design
	CEM I 52,5 N GGBFS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Microsilica Water
0	F. agg. 0/2 C. agg. 4/8 C. agg. 8/16
	C. agg. 16/22

Age: 28 days

Micro-observations

Thin calcite layer at surface Carbonation not observed Generally inhomogeneous paste porosity Porosity distinctly increases towards surface Somewhat opaline paste, CH crystals in paste, voids and adhesion cracks. W/c estimated to about 0,40 No cracks at surface Some adhesion cracks observed Well distributed air void system Distinct greenish paste at interior, light grey at surface (upper 30mm)

9 39:57 AM 24.9 µm 20.00 kV 12 000 x 8.2 mm 51

Femern O **Concrete No.:**

CHARLES (VICE)	Mix Design
1.931	CEM I 42,5 I GGBFS
	Fly ash
191 . 9 11 .	Microsilica
1. 216 4, 2 100 21	Water Air %
	F. agg. 0/2
	C. agg. 4/8
4-54 40 0	C. agg. 8/16 C. agg. 16/2
	a 60

	CEM I 42,5 N
	GGBFS
2	Fly ash
-	Microsilica
	Water
i	Air %
	F. agg. 0/2
2	C. agg. 4/8
ľ	C. agg. 8/16
	C. agg. 16/22
ł	

Age: 28 days

	Fresh Properties	
340 0 14 147 4,5	w/c Air largeB, fresh% Slump, mm Density, kg/m ³ 28 days, MPa	0,40 1,7 150 2420 56,7
695 377 266 529	Air TiB, hard.% Casting date	3,5

Micro-observations

Plane surface Carbonation not observed Generally homogeneous paste porosity, weakly increasing towards surface Well hydrated cement CH crystals in paste, voids and adhesion cracks W/c estimated to about 0,40 No cracks observed Air voids relatively large, unevenly distributed, tendency to agglomerate Remnants of polymers in air voids

